Законы развития технических систем. Закон полноты частей системы Терминология и краткое введение

Анализ изобретений показывает, что развитие всех систем идёт в направлении идеализации , то есть элемент или система уменьшается или исчезает, а её функция сохраняется.

Громоздкие и тяжёлые электронно-лучевые компьютерные мониторы заменяются лёгкими и плоскими жидкокристаллическими. Скорость процессора увеличивается в сотни раз, но его размер и потребление энергии не повышаются. Сотовые телефоны усложняются, но их размер уменьшается.

 Подумайте об идеализации денег.

Элементы АРИЗ

Рассмотрим базовые шаги Алгоритма решения изобретательских задач (АРИЗ ).

1. Началом анализа является составление структурной модели ТС (как описано выше).

2. Затем выделяется главное техническое противоречие (ТП).

Техническими противоречиями (ТП) называют такие взаимодействия в системе, когда положительное действие одновременно вызывает и негативное действие; или если введение/усиление положительного действия, либо устранение/ослабление негативного действия вызывает ухудшение (в частности, недопустимое усложнение) одной из частей системы или всей системы в целом.

Для увеличения скорости винтового самолёта надо увеличить мощность двигателя, но увеличение мощности двигателя снизит скорость.

Часто для выявления главного ТП требуется проанализировать причинно-следственную цепочку (ПСЦ) связей и противоречий.

Продолжим ПСЦ для противоречия «увеличение мощности двигателя снизит скорость». Для увеличения мощности двигателя надо увеличить объём двигателя, для чего надо увеличить массу двигателя, что приведёт к дополнительному расходу топлива, что увеличит массу самолёта, что сведёт на нет выигрыш в мощности и снизит скорость.

3. Производится мысленное отделение функций (свойств)от объектов .

В анализе любого элемента системы нас интересует не он сам, а его функция, то есть способность выполнять или воспринимать определённые воздействия. Для функций также существует причинно-следственная цепочка.

Главная функция двигателя – не крутить винт, а толкать самолёт. Нам нужен не сам двигатель, а только его способность толкать самолёт. Точно так же нас интересует не телевизор, а его способность воспроизводить изображение.

4. Производится усиление противоречия .

Противоречие следует мысленно усилить, довести до предела. Много – всё, мало – ничего.

Масса двигателя вообще не увеличивается, но скорость самолёта возрастает.



5. Определяются Оперативная зона (ОЗ) и Оперативное время (ОВ).

Следует выделить тот точный момент времени и пространства, в котором возникает противоречие.

Противоречие массы двигателя и самолёта возникает всегда и везде. Противоречие между людьми, желающими попасть на самолёт, возникает только в определённое время (на праздники) и в определённых точках пространства (некоторые рейсы).

6. Формулируется идеальное решение .

Идеальное решение (или идеальный конечный результат) звучит так: икс-элемент, абсолютно не усложняя систему и не вызывая вредных явлений, устраняет вредное воздействие в течение оперативного времени (ОВ) и в пределах оперативной зоны (ОЗ), сохраняя полезное действие.

Икс-элемент заменяет газовую плиту. Функция плиты нагревать пищу в домашних условиях в течение нескольких минут остаётся, но опасности взрыва газа или отравления газом нет. Икс-элемент меньше газовой плиты. Икс-элемент – микроволновая печь

7. Определяются имеющиеся ресурсы .

Для разрешения противоречия нужны ресурсы, то есть способности других уже существующих элементов системы выполнить интересующую нас функцию (воздействие).

Ресурсы могут быть найдены:

а) внутри системы,

б) за пределами системы, во внешней среде,

в) в надсистеме.

Для перевозки пассажиров в пиковые дни можно найти следующие ресурсы:

а) внутри системы – уплотнить расположение кресел в самолёте,

б) за пределами системы – поставить на рейсы дополнительные самолёты,

в) в надсистеме (для авиации – транспорт) – использовать железную дорогу.

8. Применяются способы разделения противоречий .

Разделить противоречивые свойства можно следующими способами:



– в пространстве,

– во времени,

– на уровнях системы, подсистемы и надсистемы,

– объединением или делением с другими системами.

Предотвращение столкновения машин и пешеходов. Во времени – светофор, в пространстве – подземный переход.

Суммируя шаги АРИЗ:

Структурная модель – Поиск противоречия – Отделение свойств от объектов – Усиление противоречия – Определение точки времени и пространства – Идеальное решение – Поиск ресурсов – Разделение противоречий

Особенности этого направления идеализации:

  • уменьшение М,Г,Э за счет миниатюризации; резкое снижение габаритов (Г) и соответственно уменьшение М и Э;
  • увеличение ГПФ за счет повышения точности функционирования (уменьшается длина связей - снижается вероятность ошибок, уменьшается требуемая мощность, исчезает часть вредных факторов);
  • количество элементов системы остается неизменным вплоть до самого последнего момента - слияния подсистем в единую функциональную моно-систему.

Наиболее характерный пример мини- и микроминиатюризации в технике - это развитие радиоэлектроники в ХХ веке. Широко известна следующая иллюстрация этого процесса: "Если бы "ролс-ройс" 50-х годов усовершенствовался такими же темпами, как вычислительная техника, то этот роскошный автомобиль стоил бы сейчас два доллара, имел мотор емкостью в половину кубического сантиметра и потреблял бы тысячную часть кубического миллиметра бензина на километр пути".

Развитие элементной базы шло по пути резкого уменьшения М,Г,Э по цепочке: отдельные детали - сборки - микросборки - интегральные микросхемы (ИМС) - большие интегральные микросхемы (БИС) - сверхбольшие (СБИС). Причем на всем пути элементы принципиально не менялись: это был все тот же набор резистивных, емкостных, полупроводниковых и индуктивных элементов. Лишь в последнее время, в связи с разработкой идей выращивания электронных блоков в виде монокристаллов и сборки на основе биочипов, появились признаки перехода к принципиально новым элементам.

Развитие стиральной машины:

  • бочка с активатором (электродвигатель, насадка), шланг, крышка;
  • затем началось присоединение полезно-функциональных подсистем - подогрев, перекачка, модификации активатора, программное управление, отжим-сушка и т.д.;
  • миниатюризация - машина "Малютка" и др.;
  • предельный случай: совет из раздела "Умелые руки" - электродрель с насадкой и любой таз с бельем (стиральной машины нет, а функция ее выполняется);
  • замена механического активатора на ультразвуковой (идея давно используется для отмывки деталей в машиностроении); испытания дали отличные результаты: нужна любая емкость с бельем, порошком, водой в нее опускается небольшая коробочка (УЗ -активатор);
  • после механических и физических активаторов должен быть переход к "химической стирке" (активатор на микро-уровне).

Свертывание типографии.: выбранная книга печатается в присутствии заказчика прямо в книжном магазине. Текст и иллюстрации считываются с оптического диска и за несколько минут распечатываются на лазерном принтере (около 10 тысяч печатных листов в минуту), а затем переплетаются на автоматической переплетной линии. ("Наука и жизнь", 1987, № 6, с.104).

Очень важная вставка
в раздел 4.11.4.2

Нанотехнология Эрика Дрекслера:
технократическая утопия или закономерный этап развития техники?

Статья Б.Понкратова (с некоторыми сокращениями) "Что будем делать в третьем тысячелетии, или последняя технократическая утопия. ("Техника - молодежи", 1989, № 12, с. 18-22)

Весной 1977 г. студент Массачусетского технологического института Эрик К.Дрекслер высказал идею о необходимости перевода технических систем с макро- на микроуровень, путем создания молекулярных машин - искусственных подобий биологических молекул, работающих в живых клетках.

С конца 70-х годов Э.К.Дрекслер с небольшой группой энтузиастов начал работы по нанотехнологии в Стэнфордском университете.

Вначале были эксперименты с биоподобными структурами: аминокислотами, ферментами (катализаторами биохимических реакций), природными белками и тканями.

Однако вскоре приходит понимание того, что биоподобные структуры (и все, что они могут создать) - это органика, а значит, их возможности ограничены. Они теряют стабильность или разлагаются при повышенных температурах и давлениях, не могут с большой точностью обрабатывать твердый материал, действовать в агрессивных средах и т.п. Да и не все требуемые виды наномеханизмов можно сконструировать из биомолекул. Значит, неизбежно потребуется использовать неорганические вещества и кристаллические структуры.

Кроме того, конструирование биомашин из биологических компонентов потребует изобретения огромного количества новых принципов, способов, устройств и веществ, которые бы обеспечили получение "на выходе" нужных функций.

Поэтому нет смысла отказываться от грандиозной суммы идей и приемов, наработанных в процессе развития техники. Это все то, до чего "не додумалась" природа, начиная с колеса и кончая компьютером. Поэтому Дрекслер в своих работах подробно обосновал способы построения на атомном уровне подшипника и зубчатой передачи, рассмотрел проблемы трения скольжения и т.д.

В то же время без биоподобных структур очень трудно манипулировать отдельными атомами и молекулами. Поэтому наномашины должны соединить в себе свойства живых и технических систем.

Основным типом машин, по мысли Дрекслера, станет так называемый ассемблер , т.е. сборщик. Из любых нужных атомов и молекул он должен уметь строить наносистемы любого назначения - двигатели, "станки", вычислительные устройства, средства связи и т.д. Это будет универсальный молекулярный робот со сменными программами на "перфолентах" типа цепочек РНК или ДНК. Процесс смены программы мог бы напоминать заражение клетки вирусом.

Дрекслер считает, что сборщику для выполнения его задач достаточно иметь порядка 10 тыс. подвижных и неподвижных узлов, каждый из которых построен в среднем из сотни атомов (всего около миллиона атомов - размер, примерно, в одну тридцатую средней бактерии).

Внешне сборщик можно представить как ящик с "рукой"-манипулятором длиной в сотню атомов. Сам манипулятор прост, но может оперировать сменными инструментами любой сложности. Инструментами служат молекулы, имеющие активные реакционные центры, т.е. участки, способные образовывать прочные химические связи с другими молекулами. Внутри сборщика размещены устройства, двигающие манипулятор, заменяющие молекулярные инструменты в его захвате и содержащие программу всех действий.

Как и рибосомы в клетке, сборщики будут работать в емкостях со специальной жидкостью, богатой исходными материалами, молекулами-заготовками, а также "топливом" - молекулами с большим запасом химической энергии.

Видимо, "рука" будет просто ожидать, пока нужная молекула, пройдя через избирательную насадку, в своем хаотическом движении не ударится о захват. По этому принципу работают активные участки всех ферментов. В их структуре есть изгибы, которые по форме и размеру точно соответствуют нужной молекуле - и никакой другой. У быстрых ферментов скорость обработки составляет миллион частиц в секунду при достаточной их концентрации в среде.

Рабочий цикл сборщика, таким образом, может повторяться примерно миллион раз в секунду. Эту оценку можно подтвердить другим, независимым рассуждением: "рука" сборщика примерно в 50 млн. раз короче руки человека, и, значит, если сохранять эквивалент инерционных нагрузок, она сможет двигаться примерно во столько же раз быстрее.

Для практической наноинженерии очень опасны хаотические тепловые колебания атомов и молекул. Они могут помешать манипулятору робота обрабатывать и устанавливать детали с нужной точностью. Правда, в определенных случаях они полезны, например, когда манипулятор "ожидает" случайного наскока молекулы для ее захвата. Но для прецизионных операций тепловые колебания вредны. По этой причине Дрекслер спроектировал очень "толстый" манипулятор (конус 30 нанометров в диаметре и 100 в длину), сложенный из атомов углерода по типу алмазной решетки. Это придаст ему такую жесткость, что его тепловые перемещения не превысят половину диаметра атома.

Управлять сборщиками вручную из-за огромной скорости их работы, конечно, невозможно. Это должны делать нанокомпьютеры, программируемые на каком-нибудь обычном языке управления промышленными роботами.

Для связи с этими крошечными машинами можно использовать нанокомпьютерный интерфейс или передавать команды по радио. Подходящим средством управления наномашинами мог бы стать свет. Можно будет задействовать весь ассортимент известных фотохимических и фотофизических эффектов. Например, свет может изменять форму определенных молекул. Перемещения атомов при этом происходят за триллионные доли секунды. Наконец, свет может стать и источником энергии для наноустройств.

Что касается нанокомпьютеров, то Дрекслер и здесь предлагает использовать механические принципы. Он разработал концепцию вычислительного устройства, в котором двоичный код реализуется двумя фиксированными положениями прочных линейных карбиновых молекул из 7-8 звеньев длиной 1 нм. Эти микроскопические стерженьки скользят в твердой матрице по каналам, пересекающимся под прямыми углами, так что один стерженек может перекрывать (или не перекрывать) путь другому. Трех параллельных каналов, пересеченных четвертым, достаточно, чтобы образовать универсальную логическую ячейку. Набор таких ячеек позволяет реализовать любой процесс вычислений или обработки информации.

Запоминающее устройство емкостью в миллиард байт займет в таком исполнении объем бактерии - один кубический микрон. Длительность вычислительного цикла, то есть время перемещения стерженька из одного положения в другое, при его ничтожных размерах, составит всего 50 пикосекунд. Поэтому быстродействие такой механической системы будет выше, чем у лучших современных микрокомпьютеров.

Возможно ли массовое производство наномашин Дрекслера? Пока это кажется безнадежно нерентабельным. Но это будет только до тех пор, пока в один прекрасный (а может быть, и страшный) день не будет создано самовоспроизводящееся наноустройство .

Всем видам таких устройств Дрекслер дал общее название "репликатор ", то есть копировщик. Прислушайтесь внимательно к этому слову. Может быть, когда-нибудь оно обозначит новую эру в жизни человечества. Она начнется, если будет построен один-единственный копировщик. Этого окажется достаточно для такого гигантского переворота во всех областях человеческой деятельности, какого, может быть еще не знала история.

Не слишком ли сильно сказано? Давайте посмотрим.

Итак, построен один копировщик. Допустим, что он в тысячу раз сложнее сборщика, то есть число атомов в нем равно примерно миллиарду. Тогда, работая все с той же более чем умеренной производительностью - миллион атомов в секунду, копировщик соберет собственную копию за тысячу секунд, то есть за четверть часа. Опять-таки эта оценка подтверждается независимым соображением: примерно за то же время в благоприятных условиях делится клетка микроба. Новая копия немедленно приступит к самовоспроизведению, и через 10 часов в растворе со строительными и "энергетическими" молекулами будет плавать уже около 70 млрд. копировщиков, а менее чем за сутки их масса превысит тонну. Эта тонна сверхсложнейших устройств получена в течение суток без всяких затрат человеческого труда . А вторую тонну можно получить уже не за сутки, а... правильно всего за 15 минут - только подавай раствор. Вопрос о цене пожалуй что и отпадает. Немного осмелев и нарастив за неделю - другую нужную массу копировщиков, можно заставить их прямо из самих себя сложить... ну, допустим, мост через Берингов пролив.

Но дело, конечно, не в количественных рекордах. В наступившей "новой эре" исчезнет необходимость и в любом квалифицированном человеческом труде .

Вот, например, Дрекслер подробно описывает, как с помощью копировщиков построить, то есть, простите, вырастить, ракетный двигатель.

Процесс идет в баке, на дно которого помещают подложку - основание. Крышка бака герметически закрывается, и насосы наполняют его вязкой жидкостью, содержащей в виде взвеси копировщики, перепрограммированные на новые функции сборщиков.

В центре подложки находится "зародыш" нанокомпьютер, хранящий в памяти все чертежи будущего двигателя, а на поверхности имеющий участок, к которым могут "прилипать" сборщики из бурлящей вокруг взвеси. Каждый из них получает информацию о назначенном ему пространственном положении относительно зародыша и приказ захватить своими манипуляторами несколько других сборщиков из взвеси. Они также подключаются к компьютеру "зародыша" и получают аналогичные приказы. За несколько часов в жидкости вырастает некое подобие кристаллической структуры, с мельчайшими подробностями очерчивающей форму будущего двигателя.

Снова включаются насосы, заменяя в баке взвесь сборщиков раствором строительных материалов. Компьютер зародыша отдает команду, и часть составляющих каркас строителей отпускает своих соседей, складывает манипуляторы и также вымывается, оставляя ходы и каналы, которые будут заполнены нужными атомами и молекулами.

Специальные усики оставшихся сборщиков интенсивно гребут, создавая в каналах непрерывный ток жидкости, содержащей "топливо" и исходные материалы и выносящей из рабочей зоны отходы и тепло. Система связи, замкнутая на компьютер зародыша, передает команды каждому строителю.

Там, где требуется наибольшая прочность, сборщики складывают атомы углерода в алмазную решетку. Где критичны тепловая и коррозионная устойчивость, на основе окиси алюминия создаются структуры кристаллической решетки сапфира. В тех местах, где напряжения невелики, сборщики экономят вес конструкции, меньше заполняя поры. И по всему объему будущего двигателя атом за атомом выкладываются клапаны, компрессоры, датчики и т.д. На всю работу потребуется менее суток времени и минимум человеческого внимания.

А ведь в результате, в отличие от обычных двигателей, получилось изделие, которое не имеет не единого шва и выигрывает в массе примерно в 10 раз по сравнению с современными конструкциями. По своей структуре оно, пожалуй, больше похоже на драгоценный камень.

Но это все еще самые простые возможности нанотехнологии. Из теории известно, что ракетные двигатели работали бы оптимально, если бы могли менять свою форму в зависимости от режима. Только с использованием нанотехнологии это станет реальностью. Конструкция, более прочная, чем сталь, более легкая, чем дерево, сможет, подобно мускулам (используя тот же принцип скользящих волокон), расширяться, сжиматься и изгибаться, меняя силу и направление тяги.

Космический корабль сможет полностью преобразиться примерно за час. Нанотехника, встроенная в космический скафандр и обеспечивающая круговорот веществ, позволит человеку находиться в нем неограниченное время, к тому же превратив оболочку скафандра в "умножитель силы". В освоении космоса наступит новая эра.

Но то ли еще начнется на Земле? Сборщики сделают практически все практически из ничего, используя любое "подножное сырье", воду и воздух, где есть главные нужные элементы - углерод, кислород, азот, водород, алюминий и кремний; остальные, как и для живых организмов, потребуются в микроколичествах. Исчезнут вспомогательные производства и вся так называемая "группа А", а предметы потребления будут производиться "прямо на дому".

Нанотехника восстановит озонный слой, очистит от загрязнений почву, реки, атмосферу, океаны, демонтирует заводы, плотины, рудники, запечатает радиоактивные отходы в вечные самовосстанавливающиеся контейнеры. Города и дороги будут расти как трава. В пустынях поднимутся леса фотосинтетических элементов, которые дадут нужное количество электроэнергии, пищевых веществ и универсального биологического топлива - АТФ (аденозинтрифосфатной кислоты). Следы промышленной деятельности почти исчезнут с лица Земли, сократятся сельскохозяйственные угодья, большую часть планеты покроют сады и естественные экосистемы...

Произойдет новая научная революция. Сопоставимые с размерами сборщиков приборы, научное оборудование и натурные модели будут проектироваться и реализовываться в "металле" за считанные секунды. На них одновременно и с огромной быстротой пойдут миллионы параллельных экспериментов любой сложности, результаты которых обобщит искусственный интеллект и выдаст в нужной форме.

Принципиально иным станет образование. Дети получат карманные наноконструкторы, создающие движущиеся модели животных, машин и космических процессов, которыми они смогут управлять. Игровые и учебные наномашины откроют доступ к мировому знанию, разовьют по индивидуальной программе умственные способности.

Неузнаваемо изменится медицина. Последовательно проверяя и если надо "исправляя" молекулы, клетку за клеткой, орган за органом, наномашины вернут здоровье любому больному, а затем просто не допустят никаких заболеваний и патологий, в том числе генетических. Человек будет жить сотни, может быть, тысячи лет.

Труд в современном смысле, то есть " в поте лица", который с незапамятных времен был главным содержанием жизни, перестанет существовать. Потеряют смысл и нынешние понятия стоимости, цены, денег. Как считает Дрекслер, в таком полностью обновленном обществе осуществится настоящая Утопия но не из тех, где дается рецепт коллективного счастья в типовых общежитиях. Наоборот, каждый человек получит максимальное разнообразие вариантов существования, возможность, не мешая другим, свободно избирать и менять образ жизни, экспериментировать, ошибаться и начинать сначала.

Однако, Дрекслер не наивен. Он понимает, что реальная картина нанотехнологического бытия может оказаться не совсем радужной, старается предусмотреть возможные осложнения и наметить выходы...

Концепция Э.Дрекслера - яркий пример разработки идей идеализации техники в "стихийном изобретательстве", образец нахождения и формулирования Достойной цели, остроумного решения научной задачи.

За реализацию полезных функций технической системы необходимо расплачиваться.

Факторы расплаты включают различные затраты на создание, эксплуатацию и утилизацию системы, всё, чем общество должно расплачиваться за получение данной функции, в том числе и все создаваемые системой вредные функции. Например, в число факторов расплаты за перемещение людей и грузов автомобилями входят не только стоимость материалов и затраты труда на изготовление и эксплуатацию, но и вредное влияние автомобиля на окружающую среду как непосредственно, так и в процессе его производства (например металлургические процессы); затраты на строительство гаражей; место, занятое гаражами, заводами и ремонтными предприятиями; гибель людей при авариях, связанные с ними психологические потрясения и т.д.

Как уже было отмечено, технические системы развиваются. В ТРИЗ развитие технической системы понимается как процесс увеличения степени идеальности (И), которая определяется как отношение суммы выполняемых системой полезных функций (Ф п) к сумме факторов расплаты (Ф р):

Конечно, данная формула отражает тенденции развития лишь качественным образом, так как очень сложно оценить в одних количественных единицах разные функции и факторы.

Повышение идеальности технических систем может происходить как в рамках существующей конструктивной концепции, так и в результате радикального изменения конструкции, принципа действия системы.

Повышение идеальности в рамках существующей конструктивной концепции связано с количественными изменениями в системе и реализуется как с помощью компромиссных решений, так и путем решения изобретательских задач низших уровней, замены некоторых подсистем на другие, известные.

Использование ресурсов технических систем является одним из важных механизмов повышения идеальности как общей, так и частной.

Во многих случаях необходимые для решения задачи ресурсы имеются в системе в пригодном для применения виде — готовые ресурсы. Нужно только догадаться, как их использовать. Но нередки ситуации, когда имеющиеся ресурсы могут быть использованы только после определенной подготовки: накопления, видоизменения и т. п. Такие ресурсы называются производными. Нередко в качестве ресурсов, позволяющих совершенствовать техническую систему, решить изобретательскую задачу, используются также физические и химические свойства имеющихся веществ — способность претерпевать фазовые переходы, менять свои свойства, вступать в химические реакции и т. п.

Рассмотрим ресурсы, наиболее часто используемые при совершенствовании технических систем.

Ресурсы вещества готовые - это любые материалы, из которых состоит система и ее окружение, выпускаемая ею продукция, отходы и т. п., которые, в принципе, можно использовать дополнительно.

Пример 1. На заводе, выпускающем керамзит, последний используют в качестве набивки фильтра для очистки технической воды.

Пример 2. На севере в качестве набивки фильтров для очистки воздуха используют снег.

Ресурсы вещества производные - вещества, получаемые в результате любых воздействий на готовые вещественные ресурсы.

Пример. Для защиты труб от разрушения серосодержащими отходами нефтеперегонного производства через трубы предварительно прокачивают нефть, а потом продувкой горячего воздуха окисляют оставшуюся на внутренней поверхности нефтяную пленку до лакообразного состояния.

Ресурсы энергии готовые - любая энергия, нереализованные запасы которой имеются в системе или ее окружении.

Пример. Абажур для настольной лампы вращается благодаря конвекционному потоку воздуха, создаваемому теплом лампы.

Ресурсы энергии производные - энергия, получаемая в результате преобразования готовых энергетических ресурсов в другие виды энергии, либо изменения направления их действия, интенсивности и других характеристик.

Пример.

Свет электрической дуги, отраженный зеркалом, прикрепленным к маске сварщика, освещает место сварки.

Ресурсы информации готовые - информация о системе, которая может быть получена с помощью полей рассеяния (звукового, теплового, электромагнитного и т. п.) в системе либо с помощью веществ, проходящих через систему либо выходящих из нее (продукция, отходы).

Пример. Известен способ определения марки стали и параметров ее обработки по летящим при обработке искрам.

Ресурсы информации производные — информация, получаемая в результате преобразования непригодной для восприятия или обработки информации в полезную, как правило, с помощью различных физических или химических эффектов.

Пример. При возникновении и развитии трещин в работающих конструкциях возникают слабые звуковые колебания. Специальные акустические установки улавливают звуки в широком диапазоне, обрабатывают их с помощью ЭВМ и с высокой точностью оценивают характер возникшего дефекта и его опасность для конструкции.

Ресурсы пространства готовые — имеющееся в системе или ее окружении свободное, незанятое место. Эффективный способ реализации этого ресурса — использование пустоты вместо вещества.

Пример 1. Для хранения газа используют естественные полости в земле.

Пример 2. Для экономии места в вагоне поезда дверь купе вдвигается в межстеночное прост-ранство.

Ресурсы пространства производные - дополнительное пространство, получаемое в результате использования разного рода геометрических эффектов.

Пример. Использование ленты Мебиуса позволяет не менее чем в два раза повысить эффективную длину любых кольцевых элементов: ременных шкивов, магнитофонных лент, ленточных ножей и т. п.

Ресурсы времени готовые - временные промежутки в технологическом процессе, а также до или после него, между процессами, не использованные ранее или использованные частично.

Пример 1. В процессе транспортировки нефти по трубопроводу производится ее обезвоживание и обессоливание.

Пример 2. Танкер, перевозящий нефть, одновременно ведет ее переработку.

Ресурсы времени производные - временные промежутки, получаемые в результате ускорения, замедления, прерывания или превращения в непрерывные протекающих процессов.

Пример. Использование ускоренной или замедленной съемки для быстротекущих или очень медленных процессов.

Ресурсы функциональные готовые - возможности системы и ее подсистем выполнять по совместительству дополнительные функции, как близкие к основным, так и новые, неожиданные (сверхэффект).

Пример. Было установлено, что аспирин разжижает кровь, и потому в некоторых случаях оказывает вредное действие. Это его свойство было использовано для профилактики и лечения инфарктов.

Ресурсы функциональные производные - возможности системы выполнять по совместительству дополнительные функции после некоторых изменений.

Пример 1. В пресс-форме для отливки деталей из термопластов литниковые каналы выполняются в виде полезных изделий, например, букв азбуки.

Пример 2. Подъемный кран при помощи несложного приспособления сам поднимает свои подкрановые блоки при ремонте.

Системные ресурсы ×- новые полезные свойства системы или новые функции, которые могут быть получены при изменении связей между подсистемами или при новом способе объединения систем.

Пример. Технология изготовления стальных втулок предусматривала их точение из прутка, сверление внутреннего отверстия и поверхностную закалку. При этом из-за закалочных напряжений на внутренней поверхности нередко возникали микротрещины. Было предложено изменить порядок операций — сперва точить наружную поверхность, потом проводить поверхностную закалку, а потом высверливать внутренний слой материала. Теперь напряжения исчезают вместе с высверленным материалом.

Для облегчения поиска и использования ресурсов можно воспользоваться алгоритмом поиска ресурсов (рис. 3.3).

Формулировка закона и основные понятия.

Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная ТС это система, масса, габариты и энергоемкость которой стремятся к нулю, а ее способность выполнять работу при этом не уменьшается.

В пределе: идеальная система та, которой нет, а функция ее сохраняется и выполняется.

Поскольку для выполнения функции требуется только материальный объект, то за исчезнувшую (идеализированную) систему эту функцию должны выполнять другие системы (соседние ТС, над- или подсистемы). Т.е. часть систем преобразуется таким образом, чтобы выполнять еще и дополнительные функции - функции исчезнувших систем. Принимаемая к выполнению "чужая" функция может быть аналогична собственной, тогда происходит просто увеличение ГПФ данной системы; если же функции не совпадают - происходит увеличение количества функций системы.

Исчезновение систем и увеличение ГПФ или количества выполняемых функций - две стороны общего процесса идеализации.

Поэтому различают два вида идеализации систем:


Рис. 1. Виды идеализации систем.
- 1-го вида, когда масса (М), габариты (Г), энергоемкость (Э) стремятся к нулю, а ГПФ или количество выполняемых функций (Ф n) остается неизменным:

2-го вида, когда ГПФ или количество функций (Ф n) увеличивается, а масса, габариты, энергоемкость остаются неизменными,

Здесь Ф n функция системы (ГПФ) или "сумма" нескольких функций.

Общий вид идеализации систем отражает оба процесса (уменьшение М, Г, Э и увеличение ГПФ или количества функций):

То есть предельный случай идеализации техники заключается в ее уменьшении (и в конечном счете, исчезновении) при одновременном увеличении количества выполняемых ею функций; в идеале - техники не должно быть, а функции нужные человеку и обществу должны выполняться.

Идеализация реальных ТС может идти путем, отличающимся от приведенных зависимостей. Чаще всего наблюдается смешанный вид идеализации, когда выигрыш в М, Г, Э, полученный в процессе идеализации, тут же расходуется на дополнительное увеличение ГПФ или количества функций. Эти процессы можно условно изобразить кривыми, показанными на рис. 29.


Рис. 2. Один из смешанных видов идеализации реальных систем.
1 - процесс идеализации общего вида, 2 - процесс увеличения полезно-функцио-нальных подсистем (развертывания ТС - увеличения (М,Г,Э), 3 - равнодействующая линия развития I(S).

Подобные зависимости характерны, например, для авиации, водного транспорта, военной техники и др.

Процесс идеализации внешне аналогичен 2-му виду I(S 2), когда увеличение ГПФ происходит при неизменных значениях М,Г,Э. На самом деле М,Г,Э подсистем уменьшаются, но сами эти подсистемы удваиваются, утраиваются, появляются новые и т.д. Таким образом, на уровне подсистем идет процесс идеализации 1-го вида, а на уровне всей ТС идеализация 2-го вида.

Если разнести во времени процессы 1,2 (рис. 29), то есть разделить смешанный процесс на два раздельных, то получим некий обобщенный (нормальный) процесс развития ТС, включающий фазу развертывания и фазу свертывания системы (рис. 30).


Рис. 3. Нормальный вид идеализации реальных систем.
1 - развертывание ТС, 2 - свертывание ТС, 3 - огибающая кривая.

Техническая система, возникнув, начинает "завоевывать" пространство (увеличивает свои М,Г,Э), а достигнув некоторого предела, уменьшается (свертывается).

Процесс развития ТС протекает во времени, поэтому горизонтальная ось (Ф n - ГПФ) это одновременно и ось времени - каждое изобретение увеличивает главную полезную функцию системы (рис. 31).


Рис. 4. Развитие ТС во времени.

Можно преобразовать эти графики в окончательный вид - волнообразную кривую развития ТС в пространстве и времени (рис. 32). Эта модель развития справедлива для всех уровней иерархии над- и подсистем, вещества.


Рис. 5. Пространственно-временная модель развития ТС.

Таким образом, процесс развития (идеализации) технических систем можно описать выражением:

Один из механизмов развертывания (перехода в НС) переход моно-би-поли хорошо вписывается в "волну" развития ТС (рис. 33). На любом этапе развития (развертывания) система может быть свернута в идеальное вещество - в новую моно-систему, которая может стать началом новой волны развития.


Рис. 6. Модель развития технических систем.

Как делаются шаги по линии развития ТС?, что движет систему от одного изобретения к другому?, каков механизм этого процесса?

Анализ истории развития многих ТС показывает, что все они развиваются через ряд последовательных событий:

1. Возникновение потребности.

2. Формулирование главной полезной функции - социального заказа на новую ТС.

3. Синтез новой ТС, начало ее функционирования (минимальная ГПФ).

4. Увеличение ГПФ - попытка "выжать" из системы больше, чем она может дать.

5. При увеличении ГПФ ухудшается какая-то часть (или свойство) ТС - возникает техническое противоречие, то есть появляется возможность сформулировать изобретательскую задачу.

6. Формулирование требуемых изменений ТС (ответ на вопросы: что надо сделать для увеличения ГПФ? и что не позволяет нам это сделать?), то есть переход к изобретательской задаче.

7. Решение изобретательской задачи с применением знаний из области науки и техники (и даже шире - из культуры вообще).

8. Изменение в ТС в соответствии с изобретением.

9. Увеличение ГПФ (см. шаг 4).

Развитие всех систем идет в направлении увеличения степени идеальности.

Идеальная техническая система - это система, вес, объем и площадь которой стремятся к нулю, хотя ее способность выполнять работу при этом не уменьшается. Иначе говоря, идеальная система - это когда системы нет, а функция ее сохраняется и выполняется.

Несмотря на очевидность понятия «идеальная техническая система», существует определенный парадокс: реальные системы становятся все более крупноразмерными и тяжелыми. Увеличиваются размеры и вес самолетов, танкеров, автомобилей и т. д. Парадокс этот объясняется тем, что высвобожденные при совершенствовании системы резервы направляются на увеличение ее размеров и, главное, повышение рабочих параметров. Первые автомобили имели скорость 15--20 км/ч. Если бы эта скорость не увеличивалась, постепенно появились бы автомобили, намного более легкие и компактные с той же прочностью и комфортабельностью. Однако каждое усовершенствование в автомобиле (использование более прочных материалов, повышение к. л. д. двигателя и т. д.) направлялось на увеличение скорости автомобиля и того, что «обслуживает» эту скорость (мощная тормозная система, прочный кузов, усиленная амортизация). Чтобы наглядно увидеть возрастание степени идеальности автомобиля, надо сравнить современный автомобиль со старым рекордным автомобилем, имевшим ту же скорость (на той же дистанции).

Видимый вторичный процесс (рост скорости, мощностей, тоннажа и т. д.) маскирует первичный процесс увеличения степени идеальности технической системы. Но при решении изобретательских задач необходимо ориентироваться именно на увеличение степени идеальности - это надежный критерий для корректировки задачи и оценки полученного ответа.



Похожие статьи